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Abstract. In particle physics, semi-supervised machine learning is an attractive option to
reduce model dependency in searches beyond the Standard Model. Over-training of the model
must be investigated when using semi-supervised techniques to train machine learning models
for searches for new bosons at the Large Hadron Collider. In the training of classification
models, fake signals can be generated due to over-fitting. The extent of false signals generated
in semi-supervised models requires further analysis and therefore the probability of such
situations occurring must be quantified on a case-by-case basis. This investigation of Zγ
resonances is performed using toy Monte Carlo samples normalised to mimic ATLAS data
in a background-plus-signal region. Performing multiple runs, using random toy Monte Carlo
samples, the probability of false signals being produced through over-training is investigated.
The distribution of significance, of fake signals being generated using semi-supervised techniques,
is found to form the positive side of a normal distribution for all background rejections and can
therefore be said to be under control.

1. Introduction
In 2012 the ATLAS and CMS collaborations reported on the observation of a Higgs boson with a
mass of 125GeV [1, 2]. The Standard Model (SM) was completed by the discovery of the Higgs
boson. The SM however, is not able to explain a number of phenomena that display substantial
experimental evidence, such as Dark Matter, the origin of neutrino mass, the matter-anti-matter
asymmetry, and a number of theoretical problems. These experimental discrepancies with the
SM motivate the search for new bosons.

A 2HDM+S model, where S is a singlet scalar, was used in Ref. [3, 4] to explain some
features of the Run 1 Large Hadron Collider (LHC) data. Here the heavy scalar, H, decays
predominantly into SS, Sh, where h is the SM Higgs boson. The model predicts the emergence
of multi-lepton anomalies that have been verified in Refs. [5, 6, 7, 8], where a possible candidate
of S has been reported in Ref. [9]. The model can elaborate on multiple anomalies in astro-
physics, if it is complemented by a Dark Matter candidate [10]. It can be further extended
to account for anomalies, including the anomaly reported by Fermilab, in the g − 2 muon
experiment [11, 12, 13]. For a full review of anomalies, see Ref. [14].
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The above mentioned motivates for the searches of heavy scalar resonances. We choose
to investigate the search of H → Zγ with Z → ℓℓ and ℓ = e, µ. This is done using semi-
supervision with topological features, as suggested in Ref. [15]. Semi-supervised learning is a
machine learning technique where a model is trained on partially labelled data in order to reduce
training biases. In this paper we focus on the potential over-training entailed in the the use of
semi-supervision when confronting side-bands and the signal region using a neural network.

1.1. Zγ Dataset
In this study we use the simulated Higgs like heavy scalar decaying to Zγ (pp → H → Zγ) events,
where Z → e+e− or Z → µ+µ−. The simulated Zγ dataset was produced using truth particles
and particle reconstruction by ATLAS full simulation. The objects of analysis are electrons,
muons, photons, jets and b-jets. The simulated non-resonant Zγ dataset is used as it is the
dominant background, representing more than 90% of the total background. This is therefore
an ideal dataset to evaluate the extent of false signals generated during the Machine Learning
(ML) training as any signals found within the dataset are a product of over-training and/or
fluctuations within the phase space. Further details on the Zγ dataset, including production
mechanisms, are described in Ref. [16]. The important features selected and used for this
analysis are the invariant mass, mℓℓγ ; invariant di-jet mass, mjj ; pseudo-rapidity of leading and
sub-leading jets, ηj1, ηj2; number of jets, Nj ; number of leptons, Nℓ; number of b-jets, Nbj ;

T E; transverse energy significance, σ
T
misstransverse energy, Emiss and the following difference in

the azimuthal angles, ∆Φ(ForwardJets, Emiss
T ), ∆Φ(LeadingJet, Emiss

T ), ∆Φ(LeadingJet, Zγ),
∆Φ(Zγ,Emiss

T ). Example feature distributions are shown in Figure 1.
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Figure 1: Zγ dataset important feature distributions.

1.2. Semi-Supervised Machine Learning
In high energy physics, fully-supervised ML methods are frequently used as binary classifiers.
The model is trained on labelled data where each event, x⃗i, has a corresponding target/label,
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yi ∈ {0, 1}. The model can therefore be understood to be trained on two sample types, a signal
sample, with label 1, and background sample, with label 0. For each given event, x⃗i, the model
generates a an output response, ŷi ∈ (0, 1). Model training therefore aims to minimise the
difference between the targets and the responses by using a loss function, usually in the form of
binary cross-entropy:

ℓ(y, ŷ) = −y · log ŷ + (1− y) · log(1− ŷ), (1)

The minimising of the loss function to find the optimum solution in full-supervision ML can
therefore be described using the following equation:

ffull = argminf :Rn→[0,1]

N∑
i=1

ℓ(yi, ŷi), (2)

In semi-supervised models Ref. [17], the model is trained on partially labelled datasets. This
means that the model is trained on one sample of pure background, labelled 0, and one unlabeled
sample made up of a mixture of signal and background events, labelled 1. Therefore as apposed to
full-supervised methods, Eq. 2, the semi-supervised method can be described using the following
equation:

fsemi = argminf :Rn→[0,1]

∑
K

ℓ

(
1

|K|
∑
i∈K

ŷi, yK

)
, (3)

where K denotes the batches of training data and yK is the signal ratio in each batch.

The quantification of uncertainties propagated within ML methods is vital in sub-atomic
physics analysis as it allows both an understanding of the accuracy of any predictions made and
exposes the level of validity of any ML based discoveries. The uncertainties in fully supervised
techniques used in particle physics are well defined and extensively researched [18], however the
uncertainties propagated in semi-supervised techniques have not been quantified to the same
extent. This research therefore focuses on measuring the uncertainties, represented as fake
signals, produced in the training of semi-supervised models within a given phase space.

2. Methodology
A benchmark centre of mass of 200GeV is selected and each data sample is divided into a
mass-window of 194 to 206GeV and side-bands from 194 to 182GeV and from 206 to 218GeV.
The model is trained on Zγ events, with sample 0 and sample 1 consisting of events within the
side-band and mass-window region respectively. As neither sample contains signal, there is no
significant separation expected, in the model output, between the mass-window and side-band
samples.

2.1. Deep Neural Network Model
The Binary Decision Tree (BDT), Multi-Layer Perceptron (MLP) and Deep Neural Network
(DNN) classification models were compared. The area under the Receiver Operating
Characteristic (ROC) curve is used to evaluate the classifier performance and the Kolmogorov-
Smirnov test is used to measure over-training of the models. The DNN is selected as the
optimum classifier as it showed the best classification score and lowest over-training. As the
model is being used as a binary classifier, the cross-entropy loss (Eq. 1) is used as the loss
function during training.

The DNN architecture implemented in this study consists of an input layer (360 neuron),
four hidden layers (180, 180, 90, 180 neuron respectively) and an output layer with a single
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neuron. The input and hidden layers use the rectified linear unit (ReLu) activation function and
the output layer uses the sigmoid activation function. A learning rate of 1 · 10−3 is used with a
learning decay of 3 · 10−4. The model is run for 8 epochs using a batch size of 1.

2.2. Toy Monte Carlo Sample Generation
In order to evaluate the over-training of the DNN model, the model must be run on a large
number of statistically unique samples. To this end a toy Monte Carlo (MC) generator is
used to extract random batches of events from the Zγ simulated dataset. Each batch of
events is normalised, using the corresponding event weights, to mimic data produced at the
ATLAS experiment. Each sample contains approximately 45500 side-band events and 23000
mass-window events, labelled 0 and 1 respectively. Therefore the toy MC generator is used to
produce a single random normalised sample for each given run of the model.

2.3. Evaluating Over-training on Invariant Mass
In order to calculate the significance of false signals being generated, the following steps are
applied to each toy MC sample generated.

(i) The DNN model is trained on the given sample using events within the side-band and mass-
window regions as sample 0 and sample 1 respectively. Once trained the DNN output, in
the form of a response distribution (example in Figure 2), is generated.

(ii) Batches of 50, 60, 70, 80 and 90% of the total events are taken from the response distribution.
Each batch is extracted by starting at the response distribution’s maximum, 1, and moving
towards the minimum, 0, until the required percentage of events are collected. The events
of each batch are then mapped to their corresponding invariant mass.

(iii) The invariant mass, mℓℓγ , distribution of each batch is than analysed in terms of the mass-
window and side-band. This is done by fitting an exponential function and an exponential
+ Gaussian function to each batch’s invariant mass distribution:

(4)f(x) = n0 · eax+bx2
,

g(x) = n0 · eax+bx2
+ n1 · e

(x−µ)2

2σ , (5)

where n0, a, b and n1 are constants produced in the fit; µ is the mean (fixed at centre of
mass) and σ is the standard deviation (as calculated by the fit). The exponential function,
Eq. 4, is therefore used to describe the background, in the side-band and mass-window, and
the Gaussian function, Eq. 5, is used to define signal, within the mass window. An example
of the invariant mass distribution fits is shown in Figure 3.

2.4. Significance Calculation
The significance of fake signals generated, in the mass-window, due to over training can be
quantified as the difference between the log-likelihoods of the two functions. The following steps
are implemented:

(i) The log-likelihood can be calculated using a Poisson probability mass function, pX , on the
first n terms of the invariant mass distribution {Xn}. The probability mass function of a
term xi is:

pX(xi) = e
−λλ

x

x

!
i

i , (6)
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Figure 2: Example DNN response distribution output from a single toy MC sample.

where λ is the parameter of interest. The likelihood function, L, and log-likelihood, ln(L),
can therefore be calculated as follows:

L(λ;x1, x2, ..., xn) =
∏n
i=1

e−λλ
xi

xi!
, (7)

lnL(λ;x1, x2, ..., xn) = −nλ−
∑n
i=1

ln(xi!) + ln(λ)
∑n
i=1

xi. (8)

(ii) The log-likelihood of the two functions can then be used to calculate the model’s uncertainty
significance for the given run:

Sk =
√
2 · (lnLeg − lnLe), (9)

where Sk is the Significance for the kth run and Leg and Le are the log-likelihoods of the
exponential + Gaussian function and the Exponential function, respectively.

(iii) Repeating the process with statistically random toy MC samples a number of times (initially
500 times) will produce the statistical deviations in significance of fake signals being
generated. The uncertainty generated, within the semi-supervised model, can therefore
be quantified. As the samples are limited by the MC statistics, the number of runs is
limited to 500.

3. Results
3.1. Invariant Mass Distribution with Cuts
In order to analyse false signals generated in the training of the model, the DNN is trained and
the output response distribution analysed, for each toy MC sample. An example of the response
distribution produced in a single run can be seen below in Figure 2.

Background rejection batches, containing 50, 60, 70, 80 and 90% of the total events, are
extracted from the DNN response distribution and mapped to their corresponding invariant
masses. An example of the number of events extracted for each background rejection, in a single
run, is shown in Table 1. The fit functions, Eq. 4 and 5, are applied to each invariant mass
distribution in order to expose the extent of fake signals generated. Examples of the 60 and 80%
background rejections, for a single run, are shown in Figure 3.
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Figure 3: Example mℓℓγ distributions of 60% and 80% background rejections, for a single run.

3.2. Significance Distributions
For each background rejection, of a given run, the significance is calculated using the difference in
the log-likelihoods of the fit functions, Eq. 9. Therefore for each background rejection, of a given
run, the significance is calculated. The breakdown of background rejections and corresponding
significance for an example run is shown in Table 1.

Table 1: Example of the number of events and corresponding significance, related to each
background rejection, for a single run.

% Events Mass-window events Side-band events Significance (σ)

50 3347 6462 1.80
60 4007 7764 2.85
70 4642 9091 2.15
80 5251 10444 1.87
90 5841 11816 1.36

Repeating this methodology on multiple toy MC samples, produces significance distributions
for each background rejection. These significance distributions can therefore be used to quantify
the extent of false signals produced in the model. The results below, in Figure 4, demonstrate
examples of the significance distributions produced when the model is run on 500 toy MC
samples.

4. Conclusions
The investigation into quantifying the uncertainty generated, through the over-training of semi-
supervised techniques, using Zγ resonances was performed using pure background toy MC
generated samples and a semi-supervised DNN model. The invariant mass distributions for
various background rejections was used to measure the fake signals produced by the model. This
in turn was quantified through the calculated significance for the background rejections of each
run. The significance distributions produced on 500 samples, Figure 4, form the positive side of a
normal distribution for all background rejections. The significance distributions therefore verify
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Figure 4: Significance distribution, for 60% and 80% background rejection, for 500 runs.

that the extent of fake signals generated, does not refute any scientific observations made using
the semi-supervised technique. The study however is limited by the MC statistics produced
using full simulation and future research should consider adopting generative models to increase
the size and statistics of the dataset used for analysis.

References
[1] Aad G et al. (ATLAS) 2012 Phys. Lett. B 716 1–29 (Preprint 1207.7214)
[2] Chatrchyan S et al. (CMS) 2012 Phys. Lett. B 716 30–61 (Preprint 1207.7235)
[3] von Buddenbrock S, Chakrabarty N, Cornell A S, Kar D, Kumar M, Mandal T, Mellado B, Mukhopadhyaya

B and Reed R G 2015 (Preprint 1506.00612)
[4] von Buddenbrock S, Chakrabarty N, Cornell A S, Kar D, Kumar M, Mandal T, Mellado B, Mukhopadhyaya

B, Reed R G and Ruan X 2016 Eur. Phys. J. C 76 580 (Preprint 1606.01674)
[5] von Buddenbrock S, Cornell A S, Fadol A, Kumar M, Mellado B and Ruan X 2018 J. Phys. G 45 115003

(Preprint 1711.07874)
[6] Buddenbrock S, Cornell A S, Fang Y, Fadol Mohammed A, Kumar M, Mellado B and Tomiwa K G 2019

JHEP 10 157 (Preprint 1901.05300)
[7] von Buddenbrock S, Ruiz R and Mellado B 2020 Phys. Lett. B 811 135964 (Preprint 2009.00032)
[8] Hernandez Y, Kumar M, Cornell A S, Dahbi S E, Fang Y, Lieberman B, Mellado B, Monnakgotla K, Ruan

X and Xin S 2021 Eur. Phys. J. C 81 365 (Preprint 1912.00699)
[9] Crivellin A, Fang Y, Fischer O, Kumar A, Kumar M, Malwa E, Mellado B, Rapheeha N, Ruan X and Sha

Q 2021 (Preprint 2109.02650)
[10] Beck G, Kumar M, Malwa E, Mellado B and Temo R 2021 (Preprint 2102.10596)
[11] Sabatta D, Cornell A S, Goyal A, Kumar M, Mellado B and Ruan X 2020 Chin. Phys. C 44 063103 (Preprint

1909.03969)
[12] Abi B et al. (Muon g-2) 2021 Phys. Rev. Lett. 126 141801 (Preprint 2104.03281)
[13] Aoyama T et al. 2020 Phys. Rept. 887 1–166 (Preprint 2006.04822)
[14] Fischer O et al. 2021 Unveiling hidden Physics Beyond the Standard Model at the LHC (Preprint 2109.06065)
[15] Dahbi S E, Choma J, Mokgatitswane G, Ruan X, Lieberman B, Mellado B and Celik T 2021 International

Journal of Modern Physics A ISSN 1793-656X URL http://dx.doi.org/10.1142/S0217751X21502419

[16] Aad G et al. (ATLAS) 2019 ATLAS-CONF-2019-034
[17] Dery L M, Nachman B, Rubbo F and Schwartzman A 2017 Journal of High Energy Physics 2017 1–11
[18] Abdughani M, Ren J, Yang J M and Zhao J 2019 Communications in Theoretical Physics 71 955

SAIP2021 Proceedings 

SA Institute of Physics 

 

ISBN: 978-0-620-97693-0 Page: 84




